Chronic Hydrocarbon Releases at Gas Stations

Markus Hilpert

Department of Environmental Health Sciences Johns Hopkins Bloomberg School of Public Health

Presentation to the OTC, June 4, 2015

Gasoline Spillage Scenarios

- Leaking underground storage tanks and piping
- Chronic liquid spills
- Chronic vapor releases

Health Effects of Gasoline

- Gasoline + NO_x → O₃
 EPA: People with lung disease, children, older adults, and people who are active outdoors may be particularly sensitive to ozone
- Benzene, toluene, ethylbenzene, and xylenes (BTEX): toxic or carcinogenic
- Benzene is carcinogenic to humans (IARC) 0.62 %vol

Chronic Liquid Spills

Journal of Contaminant Hydrology 170 (2014) 39-52

Contents lists available at ScienceDirect

Journal of Contaminant Hydrology

journal homepage: www.elsevier.com/locate/jconhyd

Infiltration and evaporation of small hydrocarbon spills at gas stations

Markus Hilpert*, Patrick N. Breysse

Department of Environmental Health Sciences, Johns Hopkins University, USA

ARTICLE INFO

Article history:

ABSTRACT

Small gasoline spills frequently occur at gasoline dispensing stations. We have developed a mathematical model to estimate both the amount of gasoline that infiltrates into the concrete

Chronic Vapor Emissions: Stage II Vapor Recovery

FLIR Gas Finder (JimSchrodt)

Discussion

- Gasoline vapor emissions can be reduced significantly by adequate
 Stage II and other pollution prevention technology
- Decommissioning Stage II Vapor Recovery relies on
 - widespread use of ORVR; however, older cars, non-road engines, motorcycles, boats and canisters are not equipped with ORVR
 - 98% efficiency of ORVR which might not apply to older vehicles
- Decommissioning Stage II Vapor Recovery can be expected to have more adverse health effects in metropolitan areas

Upscaling Evaporative Gasoline Losses

Table 27. Stage II Reductions with Zero IEE
Onroad Plus Nonroad, Displacement Plus Spillage Impacts, Scenario 1
(VOC, metric tonnes per day)

County	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Anne Arundel	0.73	0.65	0.58	0.52	0.48	0.45	0.43	0.40	0.38	0.37
Baltimore	1.00	0.88	0.78	0.70	0.64	0.59	0.56	0.53	0.50	0.48
Calvert	0.10	0.09	0.08	0.08	0.07	0.06	0.06	0.06	0.05	0.05
Carroll	0.19	0.17	0.15	0.14	0.13	0.12	0.12	0.11	0.11	0.10
Cecil	0.18	0.16	0.15	0.13	0.12	0.11	0.11	0.10	0.10	0.09
Charles	0.17	0.15	0.14	0.13	0.11	0.11	0.10	0.09	0.09	0.09
Frederick	0.39	0.35	0.31	0.28	0.26	0.24	0.22	0.21	0.20	0.20
Harford	0.30	0.26	0.24	0.21	0.20	0.19	0.18	0.17	0.16	0.15
Howard	0.49	0.43	0.39	0.35	0.32	0.30	0.28	0.27	0.26	0.25
Montgomery	1.10	0.99	0.89	0.81	0.75	0.69	0.65	0.62	0.60	0.59
Prince George's	1.12	0.98	0.87	0.77	0.69	0.63	0.58	0.54	0.52	0.50
Baltimore City	0.43	0.38	0.33	0.30	0.27	0.25	0.23	0.22	0.21	0.20
Baltimore Region Total	3.14	2.76	2.47	2.23	2.03	1.89	1.80	1.70	1.62	1.56
Washington Region Total	2.90	2.56	2.29	2.07	1.88	1.72	1.61	1.53	1.46	1.42
Stage II Area Total	6.21	5.49	4.91	4.43	4.04	3.73	3.52	3.32	3.18	3.07

Research Needs

- Econometric modeling of emissions from gasoline dispensing operations including the benefit of pollution prevention technology, and public health and energy saving benefits
- Risk analyses to assess the exposures to harmful gasoline vapors among customers, gas station workers, and nearby vulnerable populations (e.g. residents, schools)
- Measurements of gasoline vapor releases at gas stations for different pollution prevention technologies
- E²SHI Grant (Hilpert, Keeve Nachman, Jian Ni, Ana Rule):
 Public health impacts of gasoline vapor releases from gas stations:
 Developing regional standards, recommendations and informing environmental policies on vapor recovery