ICI Boiler NOx & SO₂ Control Cost Estimates

Andrew M. Bodnarik NH Department of Environmental Services OTC Committee Meeting Modeling/Stationary & Area/Mobile Sources Niagara Falls, NY September 3, 2009

Outline

- Context OTC/LADCO State Collaborative Process
 OTC/LADCO ICI Boiler Workgroup
- Purpose for developing control cost methodology
- Partial List of reference documents used
- Types of NOx & SO₂ control equipment analyzed
- Uncontrolled NOx & SO₂ emission ranges
- Controlled NOx & SO₂ emission ranges
- Comparison of NOx & SO₂ control cost assumptions
- Summary of ICI boiler NOx & SO₂ control costs

Context - State Collaborative Process OTC/LADCO ICI Boiler Workgroup

OTC/LADCO December 2005 Meeting

- NE and MW Commissioners/Directors met to discuss coordinating control programs to meet current NAAQS, and preparing for new, tighter NAAQS
- Agreed to explore several control measures, including
 - One consistent environmentally-sensitive formulated gasoline
 - Consistent standards for a range of consumer products
 - ICI boilers
- Regular Conference Calls
 - On-going discussions over past couple years
 - Formed ICI Boiler Workgroup with staff from NE and MW states to prepare a recommendation on ICI boilers
 - Agreed to send letter to EPA

Context - State Collaborative Process OTC/LADCO ICI Boiler Workgroup

- Letter to EPA (Indiana November 15, 2007, 16 other states - June 11, 2008)
 - Asked for a dialogue to address multi-pollutant air quality problems in eastern U.S.
 - Dialogue to include identifying strategies for achieving effective, equitable, and necessary emission reductions (e.g., 3rd phase of reductions for EGUs, and controls for existing ICI boilers)
- OTC/LADCO representatives met with EPA in November 2008
 - Discussed need for federal action on ICI Boilers including summary of ICI Boiler Workgroup's extensive analysis of technology-based control options and associated costs
- Technical support document being prepared to document OTC/LADCO ICI Boiler Workgroup's analysis

Purpose for Developing Control Cost Methodology

To develop improved NOx & SO_2 control cost estimates for Industrial, **Commercial and Institutional (ICI) Boilers using detailed information on** direct capital equipment costs, direct installation costs, indirect capital costs and direct & indirect operating costs in a user friendly format (Excel spreadsheets)

Background Documents

- Numerous background documents were reviewed (EPA, DOE, OTAG, NACAA*, NESCAUM, LADCO, Federal & State regulations, etc.)
- Control Cost Methodology derived mainly from:
 - "Midwest RPO BART Engineering Analysis" MACTEC, March 30, 2005
 - "ACT Document NOx Emissions from ICI Boilers", EPA 453/R-94-022, March 1994
 *NACAA formerly STAPPA & ALAPCO

Types of NOx Control Equipment Analyzed

- Low NOx Burners (LNB)
- Low NOx Burners plus Flue Gas Recirculation (LNB+FGR)
- Low NOx Burners plus Selective Non-Catalytic Reduction (LNB+SNCR)
- Selective Non-Catalytic Reduction (SNCR)
- Selective Catalytic Reduction (SCR)

Types of SO₂ Control Equipment Analyzed

Dry Flue Gas De-Sulfurization (Dry FGD)

This cost analysis for Dry FGD focused on spray dryer absorption systems which spray lime slurry into and absoption tower where SO_2 is absorbed by the slurry, forming calcium sulfite/calcium sulfate. These dry solids are carried out of the tower and collected by a fabric filter.

Wet Flue Gas De-Sulfurization (Wet FGD)

There are several different versions of Wet FGD systems. The choice of Wet FGD system may be influenced by the sulfur content of the fuel (e.g., limestone forced oxidation systems are generally when firing high sulfur coal while magnesium enhanced lime systems may be used for low and high sulfur coals). In this cost analysis the Wet FGD system used lime as the base in the scrubbing liquor. Other Wet FGD systems use caustic (NaOH) and limestone.

NOx & SO₂ Control Efficiencies Analyzed

	NOx			SO2		
Option	Gas	Oil	Coal	Gas	Oil	Coal
Combustion Modification	Tune-ups (15%)	Tune-ups (15%)	Tune-ups (15%)			
	LNB (50%)	LNB (50%)	LNB (50%)			
	LNB + FGR (60%)	LNB + FGR (60%)	LNB + FGR (60%)			
	ULNB (75%)	ULNB (75%)	ULNB (75%)			
Fuel Treatment				COG Desulf. (95%)	Lower S Oil (75-95%)	
Post-Comb. Controls	SNCR (45%)	SNCR (45%)	SNCR (45%)			Dry Sorbent Inject. (40%)
	SCR (85%)	SCR (85%)	SCR (85%)			Dry FGD (85-95%)
						Wet FGD (85-95%)

Key Variables That Impact Cost Analyses

- Boiler Type
- Boiler Firing type
- Type of Fuel Combusted
 - (coal, residual oil, distillate oil, natural gas)
- Type of Emission Control
- Uncontrolled Emission Rate
- Controlled Emission Rate
- Capital Cost of Control Equipment
 - (purchased equipment cost)
- Financial costs (e.g., interest rates)
- Unit Capacity Factor (hours/year)
- Flue Gas Flow Rates and Temperatures
- Commodity Prices (e.g., lime, water)

ICI Boiler <u>Uncontrolled</u> NOx Emission Rates Used in Cost Calculations

- Wall-fired Coal 0.70 lb NOx/mmBtu
- Residual Oil 0.40 lb NOx/mmBtu
- Distillate Oil 0.20 lb NOx/mmBtu
- Natural Gas
 0.20 lb NOx/mmBtu

Actual emission rates will vary based on: NOx control type, fuel type, boiler type, boiler firing type, age of boiler, current regulatory requirements, etc.

ICI Boiler Controlled NOx Emission Rates Used in Cost Calculations

- Wall-fired Coal 0.11- 0.39 lb NOx/mmBtu
- Residual Oil 0.0675 0.20 lb NOx/mmBtu
- Distillate Oil 0.03 0.11 lb NOx/mmBtu
- Natural Gas 0.03 0.11 lb NOx/mmBtu

Actual emission rates will vary based on: NOx control type, fuel type, boiler type, boiler firing type, age of boiler, current regulatory requirements, etc.

ICI Boiler <u>Uncontrolled</u> SO₂ Emission Rates Used in Cost Calculations

Wall-fired Coal 5.00 lb SO₂/mmBtu

Actual emission rates will vary based on: SO₂ control type, fuel type, boiler type, boiler firing type, age of boiler, current regulatory requirements, etc. ICI Boiler Controlled SO₂ Emission Rates Used in Cost Calculations

Wall-fired Coal 0.25 - 0.75 lb SO₂/mmBtu

Actual emission rates will vary based on: SO₂ control type, fuel type, boiler type, boiler firing type, age of boiler, current regulatory requirements, etc. Comparison of NOx Control Cost Assumptions

Direct Capital Costs Comparison

(EPA NOx ACT/MACTEC/OTC-LADCO 2008)

- Instrumentation* (10% / 10% / 10%)
- Sales taxes* (3% / 6% / 6%)
- Freight* (5% / 5% / 5%)

* % of NOx control equipment cost

Direct Installation Costs*
 Comparison

(EPA NOx ACT / MACTEC / OTC-LADCO 2008)

(30% / 74% / 40%)

* % of Total Purchased Equipment Cost

Direct Installation Costs include:

Foundations & supports, handling, electrical, piping, insulation, painting, etc.

Indirect Capital Costs* Comparison

(EPA NOx ACT / MACTEC / OTC-LADCO 2008)

(53%-86%** / 55% / 61%-92%**)

- * % of Total Purchased Equipment Cost** Use higher % for SCR installations
- Indirect Capital Costs include:

Engineering supervision, construction field expenses, construction fees, start-up costs, testing & contingencies, etc.

Direct Operating Costs

Vary with type of boiler and NOx control equipment type

Indirect Operating Costs

(EPA NOx ACT/ MACTEC/OTC-LADCO 2008)

- Overhead*
- Administrative** (2% / 2% / 2%)
- Property Tax** (1% / 1% / 1%)
- Insurance**

* % of labor & maintenance materials costs** % of total capital cost

(60% / 60% / 60%)

(1% / 1% / 1%) (1% / 1% / 1%)

Other Cost Inputs Comparison

(EPA NOX ACT / MACTEC / OTC-LADCO 2008)

 Equipment Service Life
 (10 yrs / 20 yrs / 15 yrs)

 Interest Rate
 (10% / 7% / 10%)

 Capital Recovery Factor
 (0.1627 / 0.0944 / 0.1133)

- Control Technology Low NOx Burners
- Fuel Type Natural Gas
- 50% NOx Reduction

(from 0.20 lb. NOx/mmBtu to 0.10 lb. NOx/mmBtu)

Boiler Size	<u>(\$/ton NOx removed)</u>		
	Capital Cost Scenario		
	Low	<u>Medium</u>	<u>High</u>
50	\$10,900	\$14,700	\$43,600
100	\$5,460	\$7,350	\$21,800
250	\$2,190	\$2,940	\$8,720
750	\$728	\$980	\$2,910

- Control Technology Low NOx Burners
- Fuel Type Distillate Oil
- 50% NOx Reduction

(from 0.20 lb. NOx/mmBtu to 0.10 lb. NOx/mmBtu)

<u>Boiler Size</u>	(\$/ton NOx removed)		
	Capital Cost Scenario		
	Low	<u>Medium</u>	<u>High</u>
50	\$10,900	\$14,700	\$43,600
100	\$5,460	\$7,350	\$21,800
250	\$2,190	\$2,940	\$8,720
750	\$728	\$980	\$2,910

- Control Technology Low NOx Burners
- Fuel Type Residual Oil
- 50% NOx Reduction

(from 0.40 lb. NOx/mmBtu to 0.20 lb. NOx/mmBtu)

Boiler Size	<u>(\$/ton NOx removed)</u>		
	Capital Cost Scenario		
	Low	<u>Medium</u>	<u>High</u>
50	\$5,460	\$7,352	\$21,800
100	\$2,730	\$3,680	\$10,900
250	\$1,090	\$1,470	\$4,360
750	\$364	\$490	\$1,450

- Control Technology Low NOx Burners
- Fuel Type Wall-fired Coal
- 50% NOx Reduction

(from 0.70 lb. NOx/mmBtu to 0.35 lb. NOx/mmBtu)

Boiler Size	<u>(\$/ton NOx removed)</u>		
	Capita	al Cost Sce	nario
	Low	<u>Medium</u>	<u>High</u>
50	\$3,120	\$4,200	\$12,460
100	\$1,560	\$2,100	\$6,230
250	\$624	\$840	\$2,490
750	\$208	\$280	\$831

- Control Technology LNB plus FGR
- Fuel Type Residual Oil
- 60% NOx Reduction

(from 0.40 lb. NOx/mmBtu to 0.16 lb. NOx/mmBtu)

Boiler Size	<u>(\$/ton NOx removed)</u>		
	Capital Cost	Scenario	
	Low	<u>High</u>	
50	\$13,200	\$26,800	
100	\$6,600	\$13,400	
250	\$2,640	\$5,360	
750	\$880	\$1,790	

- Control Technology LNB plus SNCR
- Fuel Type Residual Oil
- 65% NOx Reduction

(from 0.40 lb. NOx/mmBtu to 0.14 lb. NOx/mmBtu)

<u>(\$/ton NOx removed)</u>		
Capital Cost	Scenario	
Low	<u>High</u>	
\$13,770	\$28,200	
\$7,370	\$14,600	
\$3,520	\$6,410	
\$1,810	\$2,770	
	Capital Cost <u>Low</u> \$13,770 \$7,370 \$3,520	

- Control Technology SNCR
- Fuel Type Residual Oil
- 50% NOx Reduction

(from 0.40 lb. NOx/mmBtu to 0.20 lb. NOx/mmBtu)

<u>Boiler Size</u>	<u>(\$/ton NOx removed)</u>		
	Capital Cost	Cost Scenario	
	Low	<u>High</u>	
50	\$10,550	\$14,840	
100	\$5, 900	\$8,040	
250	\$3,110	\$3,970	
750	\$1,870	\$2,150	

- Control Technology SNCR
- Fuel Type Wall-fired Coal
- 45% NOx Reduction

(from 0.70 lb. NOx/mmBtu to 0.39 lb. NOx/mmBtu)

Boiler Size	<u>(\$/ton NOx re</u>	emoved)
	Capital Cost	Scenario
	Low	<u>High</u>
50	\$7,210	\$9,930
100	\$4,260	\$5,620
250	\$2,480	\$3,030
750	\$1,690	\$1,880

- Control Technology SCR
- Fuel Type Residual Oil
- 85% NOx Reduction

(from 0.40 lb. NOx/mmBtu to 0.0675 lb. NOx/mmBtu)

Boiler Size	(\$/ton NOx removed)		
	Capital Cost	Scenario	
	Low	<u>High</u>	
50	\$11,220	\$39,800	
100	\$5,840	\$20,100	
250	\$2,620	\$8,330	
750	\$1,180	\$3,080	

- Control Technology SCR
- Fuel Type Wall-fired Coal
- 85% NOx Reduction

(from 0.70 lb. NOx/mmBtu to 0.11 lb. NOx/mmBtu)

Boiler Size	(\$/ton NOx removed)		
	Capital Cost	Scenario	
	Low	<u>High</u>	
50	\$6,500	\$22,840	
100	\$3,430	\$11,600	
250	\$1,590	\$4,860	
750	\$770	\$1,860	

ICI Boiler SO₂ Control Cost Estimates (\$/ton SO₂ removed)

- Control Technology Dry FGD
- Fuel Type Wall-fired Coal

85% SO₂ Reduction (from 5.00 lb. to 0.75 lb. SO₂/mmBtu) **95% SO**₂ **Reduction** (from 5.00 lb. to 0.25 lb. SO₂/mmBtu)

Boiler Size	<u>(\$/ton Solution (</u>	<u> O₂ removed</u>)	(\$/ <u>ton SC</u>	D ₂ removed)
	Capita	al Cost	Capita	l Cost
	Low	<u>High</u>	Low	<u>High</u>
100	\$1,780	\$7,690	\$1,590	\$6,880
250	\$1,650	\$4,010	\$1,480	\$3,590
750	\$1,590	\$2,380	\$1,420	\$2,130

ICI Boiler SO₂ Control Cost Estimates (\$/ton SO₂ removed)

- Control Technology Wet FGD
- Fuel Type Wall-fired Coal

85% SO₂ Reduction (from 5.00 lb. to 0.75 lb. SO₂/mmBtu) **95% SO**₂ **Reduction** (from 5.00 lb. to 0.25 lb. SO₂/mmBtu)

Boiler Size	<u>(\$/ton Solution (</u>	<u>O₂ removed)</u>	(\$/ <u>ton S(</u>	D ₂ removed)	
	Capital Cost		Capita	Capital Cost	
	Low	<u>High</u>	Low	<u>High</u>	
100	\$1,840	\$7,510	\$1,650	\$6,720	
250	\$1,570	\$3,830	\$1,400	\$3,430	
750	\$1,440	\$2,220	\$1,290	\$1,970	

Summary

- Methodology contains sufficient level of detail to develop improved NOx and SO₂ control cost estimates
- Excel format is user friendly and allows flexibility for user to input case specific data
- Excel format allows user to update data as newer data becomes available

Bonus Material

San Joaquin Valley APCD ICI Boiler NOx Control Cost Estimates Final Draft Staff Report (9/18/08)

- Control Technology Ultra Low NOx Burners
- Fuel Type Natural Gas
- 69% NOx Reduction

[from 30 ppmv (0.036 lb. NOx/mmBtu) to 9 ppmv (0.011 lb. NOx/mmBtu]

Boiler Size	Capital Cost (\$)	<u>(\$/ton NO)</u>	<u>(\$/ton NOx removed)</u>	
		Capacity	Capacity Factor	
		<u>50%</u>	<u>75%</u>	
44	\$114,172	\$13,931	\$9,289	
68	\$127,200	\$11,748	\$7,833	
92	\$151,766	\$10,754	\$7,170	
115	\$179,672	\$10,556	\$7,037	
130	\$194,560	\$10,234	\$6,823	
150	\$214,411	\$9,914	\$6,609	

Comparison of NOx and SO₂ Control Cost Estimates for ICI Boilers

Literature Values MACTEC 2008 Results Modified CUECost Results January, 2009

Data Sources of NOx & SO₂ Control Cost Estimates

- Literature Refers to data taken from NESCAUM report "Applicability and Feasibility of NOx, SO₂ and PM Emission Control Technologies for ICI Boilers", November 2008, Executive Summary, Table ES-1.
- MACTEC 2008 Refers to data derived using the MACTEC methodology with corrections and assumptions developed by the OTC/LADCO ICI Boiler Workgroup.
- Modified CUECost Refers to the data taken from NESCAUM report "Applicability and Feasibility of NOx, SO₂ and PM Emission Control Technologies for ICI Boilers", November 2008, Chapter 5, Tables 5-4 and 5-5.

Cost Estimates for NOx Control Technology Options (\$/ton NOx Removed)

	Fuel Type	Cost Method	Boiler Size	
Control Technology			100 MMBTU/hr	250 MMBTU/hr
		Literature ¹	Literature ¹ \$750 - \$7,500	
Low NOx Burners - Gas	Gas .	MACTEC 2008 ²	\$5,460 - \$21,800	\$2,190 - \$8,720
Low Nox Burners Gus		Modified CUECost ³	\$5,715	\$4,151
		Literature ¹	\$750 - \$7,500	
Low NOx Burners - Dist. Oil	Distillate Oil	MACTEC 2008 ²		
Low NOX Durners - Dist. On			\$5,460 - \$21,800	\$2,190 - \$8,720
	Residual Oil	Literature ¹	\$750 - \$7,500	
Low NOx Burners - Res. Oil		MACTEC 2008 ²	\$2,730 - \$10,900	\$1,090 - \$4,360
Low Nox Dumers Res. on		Modified CUECost ³	\$4,559	\$3,305
		Literature ¹	\$750 - \$7,500	
Low NOx Burners - Coal	Coal	MACTEC 2008 ²	\$1,560 - \$6,230	\$624 - \$2,490
		Modified CUECost ³	\$3,155	\$2,290

1. Literature values are in 2006\$.

2. MACTEC 2008 values are in 2008\$ for a 66% capacity factor at 8,760 hours/year.

3. Modified CUECost values are in 2006\$ for a 66% capacity factor at 8,760 hours/year.

Cost Estimates for NOx Control Technology Options (\$/ton NOx Removed)

	Fuel Type	Cost Method	Boiler Size	
Control Technology			100 MMBTU/hr	250 MMBTU/hr
		Literature ¹	\$1,300 - \$3,700	
SNCR - Coal (Wall-fired)	Coal	MACTEC 2008 ²	\$4,260 - \$5,620	\$2,480 - \$3,030
		Modified CUECost ³	\$4,817	\$2,422
		Literature ¹	srature ¹ \$2,000 - \$14,400	
SCR - Coal (Wall-Fired)	Coal	MACTEC 2008 ²	\$3,430 - \$11,600	\$1,590 - \$4,860
Sere Cour (Wull Flied)		Modified CUECost ³	\$6,668	\$4,763

1. Literature values are in 2006\$.

2. MACTEC 2008 values are in 2008\$ for a 66% capacity factor at 8,760 hours/year.

3. Modified CUECost values are in 2006\$ for a 66% capacity factor at 8,760 hours/year.

Cost Estimates for SO₂ Control Technology Options (\$/ton SO₂ Removed)

Control Tooknology	Fuel Type	Cost Method	Boiler Size		
Control Technology			100 MMBTU/hr	250 MMBTU/hr	
Fuel Switch 0.3%S to 0.05%S	Distillate Oil	Price Differential ¹	\$1,200 - \$2,000		
Fuel Switch 1.0%S to 0.5% S	Residual Oil	Price Differential ¹	\$1,900 - \$3,800		
		Literature ²	\$1,600 - \$5,200		
Dry FGD – Coal	Coal	MACTEC 2008 ³	\$1,590 - \$7,690	\$1,480 - \$4,010	
	Cour	Modified CUECost ⁴	\$7,909	\$3,694	
		Literature ²	\$1,900 - \$5,200		
Wet FGD (Wall-Fired)	Coal	MACTEC 2008 ³	\$1,650 - \$7,510	\$1,400 - \$3,830	
······ 22 (······ 2.1.00)		Modified CUECost ⁴	\$9,547	\$4,427	

1. Price Differential values are in 2008\$ for a 66% capacity factor at 8,760 hours/year.

Price differential between 0.3%S and 0.05%S distillate oil ranged from 2.1 to 3.5 cents per gallon

Price differential between 1.0%S and 0.5%S residual oil ranged from 7.5 to 15.0 cents per gallon

2. Literature values are in 2006\$.

3. MACTEC 2008 values are in 2008\$ for a 66% capacity factor at 8,760 hours/year.

4. Modified CUECost values are in 2006\$ for a 66% capacity factor at 8,760 hours/year.

Additional Information

Recommended National ICI Boiler NOx & SO₂ Emission Limits and Control Cost Estimates Work in Progress 4th DRAFT (1/15/09)

Andrew M. Bodnarik NH Department of Environmental Services January, 2009

Recommended National ICI Boiler NOx Emission Limits

- Gaseous Fuels (natural gas, refinery gas, blast furnace gas, coke oven gas)
 - Phase I (2012 2015)
 - <50 100 MMBtu/hr Combustion Tuning</p>
 - > 100 MMBtu/hr 0.10 lb NOx/MMBtu or 50% NOx reduction
 - Phase II (2015 2018)
 - < 50 MMBtu/hr 0.05 0.10 lb NOx/MMBtu or 50% NOx reduction
 - 50 > 100 MMBtu/hr 0.05 0.10 lb NOx/MMBtu or 60% NOx reduction

- **Distillate Oil** (#2 fuel oil)
 - Phase I (2012 2015)
 - <50 100 MMBtu/hr Combustion Tuning</p>
 - > 100 MMBtu/hr 0.10 lb NOx/MMBtu or 50% NOx reduction
 - Phase II (2015 2018)
 - < 50 MMBtu/hr 0.08 0.10 lb NOx/MMBtu or 50% NOx reduction
 - 50 > 100 MMBtu/hr 0.08 0.10 lb NOx/MMBtu or 60% NOx reduction

- Residual Oil (#6 fuel oil)
 - Phase I (2012 2015)
 - <50 100 MMBtu/hr Combustion Tuning</p>
 - > 100 MMBtu/hr 0.20 lb NOx/MMBtu or 60% NOx reduction
 - Phase II (2015 2018)
 - < 50 MMBtu/hr 0.20 lb NOx/MMBtu or 50% NOx reduction
 - 50 100 MMBtu/hr 0.20 lb NOx/MMBtu or 60% NOx reduction
 - > 100 MMBtu/hr 0.20 lb NOx/MMBtu or 70% NOx reduction

- Coal (Wall-fired) > 100 MMBtu/hr
 - Phase I (2012 2015) 0.30 lb NOx/MMBtu
 - Phase II (2015 2018) 0.10 0.14 lb NOx/MMBtu
- Coal (Tangential) > 100 MMBtu/hr
 - Phase I (2012 2015) 0.30 lb NOx/MMBtu
 - Phase II (2015 2018) 0.10 0.12 lb NOx/MMBtu
- Coal (Cyclone) > 100 MMBtu/hr

Phase I & Phase II - 0.19 lb NOx/MMBtu

 Coal (Stoker) Phase I (2012 - 2015) 50 - 100 MMBtu/hr - Combustion Tuning >100 MMBtu/hr - 0.30 lb NOx/MMBtu Phase II (2015 - 2018) 50 - 100 MMBtu/hr - 0.30 lb NOx/MMBtu >100 MMBtu/hr - 0.22 lb NOx/MMBtu Coal (Fluidized Bed) Phase I (2012 - 2015) 50 - 100 MMBtu/hr - Combustion Tuning >100 MMBtu/hr - 0.15 lb NOx/MMBtu Phase II (2015 - 2018) 50 - >100 MMBtu/hr - 0.08 lb NOx/MMBtu

Recommended National ICI Boiler SO₂ Emission Limits

- Coke Oven Gas > 100 MMBtu/hr
 - Phase I (2012-2014) & Phase II (2014-2018) remove 95% of Sulfur from coke oven gas
- #2 Distillate Oil < 50 >250 MMBtu/hr
 - Phase I (2012-2014) 500 ppm Sulfur or 0.05 lb SO₂/MMBtu
 - Phase II Northeast Inner Zone States* (2016) 15 ppm Sulfur
 - Phase II Elsewhere (2018) 15 ppm Sulfur
- #6 Residual Oil < 50 >250 MMBtu/hr
 - Phase II Northeast Inner Zone States* (2012) 0.3-0.5% Sulfur
 - Phase II Elsewhere (2018) 0.5% Sulfur
 - * The Northeast Inner Zone States are the same as specified in the MANE-VU "low sulfur oil strategy" Statement (6/20/07) namely NJ, NY, DE & PA.

Recommended National ICI Boiler SO₂ Emission Limits (Continued)

- Coal (and other solid fuels)
 - Phase I (2012-2015)
 - 50 100 MMBtu/hr 2.0 lb SO₂/MMBtu or 30% reduction*
 - 100 250 MMBtu/hr 1.2 lb SO₂/MMBtu or 85% reduction*
 - > 250 MMBtu/hr 0.25 lb SO₂/MMBtu or 85% reduction*
 - Phase II (2012-2015)
 - 50 100 MMBtu/hr 2.0 lb SO₂/MMBtu or 30% reduction*
 - 100 250 MMBtu/hr 0.25 lb SO₂/MMBtu or 85% reduction*
 - > 250 MMBtu/hr
 0.25 lb SO₂/MMBtu or 85% reduction*

* % reduction is from uncontrolled SO₂ emissions in base year 2002

Recommended National ICI Boiler NOx Emission Limits

(% values are %NOx reductions. All other values are lb. NOx/MMBTU.)

		Boiler Size (MMBTU/Hour)		
Fuel Type		< 50	50-100	> 100
Gaseous Fuels (natural gas, refinery gas, blast furnace gas, coke oven gas)	Phase I	Comb. Tuning	Comb. Tuning	0.10 or 50%
	Phase II	0.05 - 0.10 or 50%	0.05 - 0.10 or 60%	0.05 - 0.10 or 60%
Distillate Oil (#1.#2)	Phase I	Comb. Tuning	Comb. Tuning	0.10 or 50%
	Phase II	0.08 - 0.10 or 50%	0.08 - 0.10 or 60%	0.08 - 0.10 or 60%
Residual Oil (#4,#5,#6)	Phase I	Comb. Tuning	Comb. Tuning	0.20 or 60%
10010001 011 (#4,#0,#0)	Phase II	0.20 or 50%	0.20 or 60%	0.20 or 70%
Coal - Wall	Phase I			0.30
	Phase II			0.10 - 0.14
Coal - Tangential	Phase I			0.30
	Phase II			0.10 - 0.12
Coal - Cyclone	Phase I			0.19
	Phase II			0.19
Coal - Stoker	Phase I		Comb. Tuning	0.30
	Phase II		0.30	0.22
Coal - FBC	Phase I		Comb. Tuning	0.15
	Phase II		0.08	0.08
Wood and Non-Fossil Solid Fuel	Phase I		Comb. Tuning	0.30
	Phase II		0.30	0.22

Recommended National ICI Boiler SO₂ Emission Limits

		Boiler Size (MMBtu/Hour)					
Fuel Type		< 50	50-100	100-250	> 250		
Gaseous Fuels (coke oven gas)	Phase I			Treated COG with 95%S compounds removed	Treated COG with 95%S compounds removed		
	Phase I			Treated COG with 95%S compounds removed	Treated COG with 95%S compounds removed		
		0.059/.0./500			0.059(.0.(500		
	Phase I	0.05%S (500ppm), or 0.05 lb/MMBTU					
D : (11)	Phase II Northeast	Further reduce Sulfur content	Further reduce Sulfur content	Further reduce Sulfur content	Further reduce Sulfur content		
Distillate Oil (#1, #2)	States Inner Zone	to 15ppm by 2016					
	Phase II Elsewhere	Further reduce Sulfur content	Further reduce Sulfur content	Further reduce Sulfur content	Further reduce Sulfur content		
		to 15ppm by 2018					
	Phase I						
		0.5%S (or 0.54 lb/MMBTU)					
	Phase II Northeast States Inner Zone	#4 Fuel Oil	#4 Fuel Oil	#4 Fuel Oil	#4 Fuel Oil		
		0.25%S no later than 2012					
Residual Oil (#4, #5, #6)		#6 Fuel Oil 0.3-0.5% no later than 2012	#6 Fuel Oil 0.3-0.5%S no later than 2012	#6 Fuel Oil 0.3-0.5%S no later than 2012	#6 Fuel Oil 0.3-0.5%S no later than 2012		
	Phase II Elsewhere	#4 Fuel Oil 0.25-0.5%S no later than 2018					
		#6 Fuel Oil 0.5%S no later than 2018					
Coal (and other solid fuels)	Phase I		2.0 lb/MMBtu or 30% reduction*	1.2 lb/MMBtu or 85% reduction*	0.25 lb/MMBtu or 85% reduction*		
	Phase II		2.0 lb/MMBtu or 30% reduction*	0.25 lb/MMBTU or 85% reduction*	0.25 lb/MMBTU or 85% reduction*		
	* = % reduction based on uncontrolled emissions in base year (20				ear (2002)		